将式1的V移到另一边,然后同除以v^2,在对两边以v为自变量求导
动量守恒有:m0*v0=m*v,(1) 书上说:有(1)得:dm=-m0*v0*dv除以v^2 请问怎样得到后面的式子?
2个回答
相关问题
-
有关动量与动能的问题两个物体碰撞,动量守恒 m1v1+m2v2=m1'v1'+m2'v2'动能守恒 0.5(m1v1^2
-
看下这个式子:dEk=V*d(m*V)=V2*dm+m*V*dV
-
代数问题(求解方程的流程)m0 * v0 + m1 * v1 = m0 * vf0 + m1 * vf1m0 * v0^
-
动量与能量已知m1v0=m1v1+m2v2,1\2m1vo^2=1\2m1v1^2+1/2m2v2^2,求v1,v2
-
动能动量守恒,如果m1,m2,v1,v2已知的话那么对于弹性碰撞(恢复系数e=1),有 1、动量守恒 m1*v1+m2*
-
弹性碰撞公式推导两小球一动一静碰撞,M1:V1不等于0 M2:V2=0得到公式;V1'=(M1+M2)V1/M1+M2V
-
根据动量定理和动能定理有m1v1+m2v2=m1v1′+m2v2′,
-
王后雄原题,第三题,不知道为什么两个摩擦力的合力为0,并且动量为什么守恒,-m1v1+m2v2为什么等于0.
-
m=m0除以根号下1-v除以c的平方中v指的是什么
-
dv/√V =-kdt得√V=√V0 - kt/2这部这么得出来的