Sn=2/2+3/2^2+4/2^3+...+n/2^(n-1)+(n+1)/2^n 2Sn=2/1+3/2+4/2^2+...+n/2^(n-2)+(n+1)/2^(n-1) 两式相减: Sn=2+1/2+1/2^2+1/2^3+...+1/2^(n-1)-(n+1)/2^n =2+(1/2)*[1-(1/2)^(n-1)]/(1-1/2)-(n+1)/2^n =3-1/2^(n-1)...
求和:Sn=2/2+3/2^2+4/2^3+.+n/2^(n-1)+(n+1)/2^n
3个回答
相关问题
-
求和:Sn=2^/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)
-
求和 Sn=1*2+2*3+3*4+...+(n-1)n
-
求和Sn=1*3+2*4+3*5+.+n(n+2)
-
求和Sn=1*2*3+2*3*5+n(n+1)(2n+1)
-
数列求和——Sn=√1*2+√2*3+√3*4+……+√n*(n+1)
-
求和:Sn=2*3^1+4*3^2+6*3^3+.2n*3^n
-
Sn=1/2+3/2^2+5/2^3+...+(2n-1)/2^n求和
-
Sn=1/(1^2+2)+1/(2^2+4)+1/(3^2+6)+...+1/(n^2+2n),求和
-
\求和Sn=1+2x+3x^2+```+(n-1)x^(n-2)+n*x^(n-1)
-
数列求和Sn=1/1*3+4/3*5+9/5*7+……n^2/(2n-1)(2n+1)