若对x属于R,恒有3x^2+2x+2/x^2+x+1>n(n属于正实数),求n?

1个回答

  • 若对x属于R,恒有3x^2+2x+2/x^2+x+1>n(n属于正实数),求n?

    我来回答;图像过点A(0,1),B(兀/2,1)

    1 = a + b*sin0 + c*cos0

    1 = a + b*sin兀/2 + c*cos兀/2

    1 = a + c

    1 = a + b

    因此 b = c = 1 -a

    f(x)

    = a + (1-a)*(sinx + cosx)

    = a + (1-a)*√2 * (√2/2 * sinx + √2/2 cosx)

    = a + (1-a)*√2 * ( cos兀/4 * sinx + sin兀/4 *cosx)

    = a + (1-a) * √2 * sin(x + 兀/4)

    函数定义域为[0,兀/2]时

    √2 sin(x + 兀/4) ∈ [1 ,√2]

    因为 a > 1,1-a < 0,所以

    (1-a)√2 ≤(1-a) * √2 * sin(x + 兀/4)≤ 1 -a

    a + (1-a)√2 ≤a + (1-a) * √2 * sin(x + 兀/4)≤ a + 1 -a

    √2 + (1 -√2)a ≤ f(x) ≤ 1

    若要保证恒有 |f(x)| ≤2,则

    -2 ≤ √2 + (1 -√2)a

    (1 -√2)a ≥ -2 -√2

    (√2 -1)a ≤ 2 + √2

    a ≤(2+√2)/(√2 -1)

    a ≤(2+√2)(√2 + 1)

    a ≤ 4 + 3√2

    结合 a > 1,则

    1 < a ≤ 4 + 3√2 14312