f(x) = (x^2)sinx,
要用到求高阶导数的 Leibniz 公式
(uv)^(n) =∑C(n,k)[u^(k)][v^(n-k)] (翻翻书)
注意到
(x^2)' = 2x,(x^2)" = 2,(x^2)^(k) = 0 (k≥3),
(sinx)^(k) = sin(x+kπ/2) (k=0,1,2,…,n),
则
[(x^2)sinx]^(n)
= C(n,0)(x^2)[(sinx)^(n)]+C(n,1)(2x)[(sinx)^(n-1)]+C(n,2)*2*[(sinx)^(n-2)]+0
= (x^2)sin(x+nπ/2)+2nxsin[x+(n-1)π/2]+n(n+1)sin[x+(n-2)π/2].