1/a+1/b+1/c-1/(a+b+c)
=(1/a+1/b) + (1/c-1/(a+b+c))
=(a+b)/ab+(a+b)/[c(a+b+c)]
=(a+b)[1/ab+1/c(a+b+c)]
=[(a+b)(b+c)(a+c)]/[abc(a+b+c)] = 0
所以a+b=0或b+c=0或a+c=0
所以结果成立
1/a+1/b+1/c-1/(a+b+c)
=(1/a+1/b) + (1/c-1/(a+b+c))
=(a+b)/ab+(a+b)/[c(a+b+c)]
=(a+b)[1/ab+1/c(a+b+c)]
=[(a+b)(b+c)(a+c)]/[abc(a+b+c)] = 0
所以a+b=0或b+c=0或a+c=0
所以结果成立