数列An的前n项和 Sn=n^2-4n+4 求数列(1/An)的前n项和为Tn 若(T2n+1)-(Tn)小于等于m/1

1个回答

  • n=1时,S1=a1=1-4+4=1

    n≥2时,

    Sn=n²-4n+4 S(n-1)=(n-1)²-4(n-1)+4

    Sn-S(n-1)=an=n²-4n+4-(n-1)²+4(n-1)-4=2n-5

    n=1时,a1=2-5=-3,与a1=1不符.

    数列{an}的通项公式为

    an=1 n=1

    2n-5 n≥2

    n=1时,T3-T1=1/a1+1/a2+1/a3-1/a1=1/a2+1/a3=1/(4-5)+1/(6-5)=-1+1=0

    T3-T1≤m/15

    m/15≥0

    m≥0

    n≥2时,

    Tn=1/a1+1/a2+...+1/an

    T(2n+1)=1/a1+1/a2+...+1/an+1/a(n+1)+1/a(n+2)+...+1/a(2n+1)

    T(2n+1)-Tn=1/a(n+1)+1/a(n+2)+...+1/a(2n+1)

    [T(2n+3)-T(n+1)]-[T(2n+1)-Tn]

    =[1/a(n+2)+1/a(n+3)+...+1/a(2n+1)+1/a(2n+2)+1/a(2n+3)]-[1/a(n+1)+1/a(n+2)+...+1/a(2n+1)]

    =1/a(2n+2)+1/a(2n+3)-1/a(n+1)

    =1/a(2n+3)-1/(2n+2)