∠ACB=90°,CD垂直于AB于点D
所以∠BCD+∠DCA=90
∠DCA+∠DAC=90
∴∠BCD=∠DAC
∴△BCD∽△CAD
BD/CD=CD/AD
设BD=t
则AD=3t
CD^2=BD*AD=3t^2
CD=根号3t
AD/CD=3t/根号3t=根号3
所以在直角△ACD中∠A=30°
∠ACB=90°,CD垂直于AB于点D
所以∠BCD+∠DCA=90
∠DCA+∠DAC=90
∴∠BCD=∠DAC
∴△BCD∽△CAD
BD/CD=CD/AD
设BD=t
则AD=3t
CD^2=BD*AD=3t^2
CD=根号3t
AD/CD=3t/根号3t=根号3
所以在直角△ACD中∠A=30°