设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B,点C在抛物线的准线上,且BC平行与x轴求证

1个回答

  • 设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC‖x轴.证明直线AC经过原点O.

    分析:我们把线段FA、FB、OA、OC看做平面向量,由 与 共线推出 与 共线,即可说明直线AC经过原点O.

    设A(x1,y1),B(x2,y2),则y12=2px1,记为①

    y22=2px2,记为②

    焦点F=( ,0),准线方程x=- ,因为点C在抛物线的准线上,且BC‖x轴,则有C=(- ,y2).

    =(x1- ,y1),=(x2- ,y2),=(x1,y1),=(- ,y2),因为 与 共线,

    所以(x1- )y2-(x2- )y1=0.③

    联立①、②、③式可解得:y1y2=-p2.④

    而x1y2-(- )y1= y2+ y1,⑤

    将④式代入⑤式有x1y2-(- )y1=0,

    所以 与 是共线向量,A、O、C三点共线即直线AC经过原点O.