由题意,取a=n(n为正整数),b=1,可得
f(n+1)=f(n)f(1),即
f(n+1)
f(n) =f(1)=2
即
f(2)
f(1) =
f(4)
f(3) =
f(6)
f(5) =…=
f(2010)
f(2009) =2 共1005项,
故
f(2)
f(1) +
f(4)
f(3) +
f(6)
f(5) +…+
f(2010)
f(2009) =1005×2=2010
故选B
由题意,取a=n(n为正整数),b=1,可得
f(n+1)=f(n)f(1),即
f(n+1)
f(n) =f(1)=2
即
f(2)
f(1) =
f(4)
f(3) =
f(6)
f(5) =…=
f(2010)
f(2009) =2 共1005项,
故
f(2)
f(1) +
f(4)
f(3) +
f(6)
f(5) +…+
f(2010)
f(2009) =1005×2=2010
故选B