(1)对于非零常数T,f(x+T)=x+T,Tf(x)=Tx
因为对任意x∈R,x+T= Tx不能恒成立,
所以f(x)=
。
(2)因为函数f(x)=a x(a>0且a≠1)的图象与函数y=x的图象有公共点,
所以方程组:
有解,消去y得a x=x,
显然x=0不是方程a x=x的解,
所以存在非零常数T,使a T=T
于是对于f(x)=a x有
故f(x)=a x∈M。
(3)当k=0时,f(x)=0,显然f(x)=0∈M
当k≠0时,因为f(x)=sinkx∈M,
所以存在非零常数T,对任意x∈R,有f(x+T)=Tf(x)成立,
即sin(kx+kT)=Tsinkx
因为k≠0,且x∈R,
所以kx∈R,kx+kT∈R,
于是sinkx ∈[-1,1],sin(kx+kT)∈[-1,1],
故要使sin(kx+kT)=Tsinkx成立,
只有T=±1,当T=1时,sin(kx+k)=sinkx 成立,则k=2mπ,m∈Z
当T=-1时,sin(kx-k)=-sinkx成立,即sin(kx-k+π)=sinkx 成立,
则-k+π=2mπ,m∈Z ,即k=-2(m-1)π,m∈Z
综合得,实数k的取值范围是{k|k=mπ,m∈Z}。