1/3
设实数x,y,z大于等于1,且M=min{x/(y(1+z+x),y/(z(1+x+y),z/x(1+y+z)},那么M
2个回答
相关问题
-
已知x+y+z=1,x,y,z大于0,求证:x^2/(y+z)+y^2/(z+x)+z^2/(y+x)大于等于1/2
-
设x,y,z是不等于1的数,且[x(y+z-x)]/lgx = [y(z+x-y)]/lgy =[z(x+y-z)]/l
-
设x ,y,z为实数,且 (y-z)²+(x-y) ²+(z-x) ²=(y+z-2x)
-
x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)+3=0,且1/x+1/y+1/z不等于0,求x+y+z
-
已知 x,y,z都是正实数,且 x+y+z=xyz 证明 (y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1
-
设x,y,z是三个非零实数,且满足1/x+1/y+1/z=2,1/x*x+1/y*y+1/z*z=1,则1/x*y+1/
-
x,y,z为实数,且x+y+z≠0,设x/(y+z)=a,y/(z+x)=b,z/(x+y)=c
-
设0<x,y,z<1,求证x(1-y)+y(1-z)+z(1-x)<1
-
X/Y+Z=Y/X+Z+1=Z/X+Y-1=X+Y+Z,求x+y+z等于多少
-
x+y+z=1,x/(1+x)+y/(1+y)+z/(1+z)