对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,这是余弦定理.
若三边为a,b,c 三角为A,B,C ,则满足性质——
(注:a*b、a*c就是a乘b、a乘c .a^2、b^2、c^2就是a的平方,b的平方,c的平方.) a^2=b^2+c^2-2*b*c*CosA b^2=a^2+c^2-2*a*c*CosB c^2=a^2+b^2-2*a*b*CosC CosC=(a^2+b^2-c^2)/2ab CosB=(a^2+c^2-b^2)/2ac CosA=(c^2+b^2-a^2)/2bc
有公式,你记住了,往里面套数字就好