a/(b+c)+b/(a+c)+c/(a+b)
=[10-(b+c)]/(b+c)+[10-(a+c)]/(a+c)+[10-(a+b)]/(a+b)
=10/(b+c)-1+10/(a+c)-1+10/(a+b)-1
=10[1/(a+b)+1/(b+c)+1/(b+c)]-3
=140/17-3
=89/17
a/(b+c)+b/(a+c)+c/(a+b)
=[10-(b+c)]/(b+c)+[10-(a+c)]/(a+c)+[10-(a+b)]/(a+b)
=10/(b+c)-1+10/(a+c)-1+10/(a+b)-1
=10[1/(a+b)+1/(b+c)+1/(b+c)]-3
=140/17-3
=89/17