(1/√2+1+1/√3+√2+...+1/√2008+√2007)*(√2008+1)
=(√2-1+√3-√2+√4-√3...+√2008-√2007)*(√2008+1)
=[-1+(√2-√2)+(√3-√3)+(√4-√4)+...+(√2007-√2007)+√2008]*(√2008+1)
=[-1+√2008]*(√2008+1)
=(√2008)^2-1^2
=2007
(1/√2+1+1/√3+√2+...+1/√2008+√2007)*(√2008+1)
=(√2-1+√3-√2+√4-√3...+√2008-√2007)*(√2008+1)
=[-1+(√2-√2)+(√3-√3)+(√4-√4)+...+(√2007-√2007)+√2008]*(√2008+1)
=[-1+√2008]*(√2008+1)
=(√2008)^2-1^2
=2007