z=√(3x²+3y²)
(∂z/∂x)²=3x²/(x²+y²),(∂z/∂y)²=3y²/(x²+y²),
√(1+(∂z/∂x)²+(∂z/∂x)²)=√(1+3)=2
∫∫﹙x^2+y^2﹚dS
=2∫∫﹙x^2+y^2﹚dxdy 积分区域为:x²+y²≤3
=2∫∫ r³ drdθ
=2∫[0→2π] dθ∫[0→√3] r³ dr
=4π*(1/4)r^4 |[0→√3]
=9π
z=√(3x²+3y²)
(∂z/∂x)²=3x²/(x²+y²),(∂z/∂y)²=3y²/(x²+y²),
√(1+(∂z/∂x)²+(∂z/∂x)²)=√(1+3)=2
∫∫﹙x^2+y^2﹚dS
=2∫∫﹙x^2+y^2﹚dxdy 积分区域为:x²+y²≤3
=2∫∫ r³ drdθ
=2∫[0→2π] dθ∫[0→√3] r³ dr
=4π*(1/4)r^4 |[0→√3]
=9π