整理题目如下:
O'在圆O上,以O'为圆心的圆交圆O于A,B,圆O的弦O'C交圆O’于D,求证D为三角形ABC内心
连O’B,AD
弧AO’=弧BO’,∠B=∠C
∠BCO’=∠ACO’,CD是∠BCA平分线.
∠BO’D=2∠BAD,∠BO’C=∠BAC,∠BAD=∠CAD,AD是∠BAC平分线.
D为三角形ABC内心
整理题目如下:
O'在圆O上,以O'为圆心的圆交圆O于A,B,圆O的弦O'C交圆O’于D,求证D为三角形ABC内心
连O’B,AD
弧AO’=弧BO’,∠B=∠C
∠BCO’=∠ACO’,CD是∠BCA平分线.
∠BO’D=2∠BAD,∠BO’C=∠BAC,∠BAD=∠CAD,AD是∠BAC平分线.
D为三角形ABC内心