对任意可到 f(3+x)=3f(x) 双边求导得f'(3+x)=3f'(x) 将x=0代入上式 f'(3)=3*f'(0)=1
设f(x)在x=0处可导,且 f'(0)=1/3 又对任意的x有f(3+x)=3f(x),求f'(3)
1个回答
相关问题
-
函数f(x)在x0处可导且limx趋于0 f(x0+3x)-f(x0-x)/3x=1 f'(x)=
-
设f(x)可导,且f(0)=0,证明F(X)=f(x)(1+/SINX/)在x=0处可导
-
已知f(x)在x=0处可导,且f(0)=0,则limx→0x2f(x)−2f(x3)x3=( )
-
已知f(x)在x=0处可导,且f(0)=0,则limx→0x2f(x)−2f(x3)x3=( )
-
待解决 设函数f(x)在x=0处可导,且f(0)=0,求下列极限 设函数f(x)在x=0处可导,且f
-
设lim[1-cos3x]f(x)/x2sin2x,其中f(x)在x=0处可导,f(0)=0,则f'(0)=
-
设f (x)在x=0处可导,且f (0)=0,求证:lim(x→∞)f (tx)-f (x)/x=(t-1)f' (0)
-
设f(x)可导且f(x)=0,证明:F(X)=f(x)(1+/sinx/)在x=0点可导,并求F(0)的导数
-
F(x)=f(x)(1+|sinx|),F(x),f(x)在x=0处可导,求f(0)
-
设f(x)在x=0处可导,且f(0)=0,则limx趋于0f(x)/x=?