如图,已知△ABC中,AD是BC边上的高,AE是∠BAC的角平分线,若∠C=40°,∠B=64°,求

2个回答

  • 解题思路:由AD是BC边上的高得∠ADB=90°,根据三角形内角和定理得∠BAD=180°-∠ADB-∠B=180°-90°-64°=26°,∠BAC=180°-∠B-∠C=180°-40°-64°=76°,再利用

    角平分线的定义可计算∠BAE=[1/2]∠BAC=[1/2]×76°=38°,然后利用∠DAE=∠BAE-∠BAD即可计算出∠DAE的度数.

    ∵AD是BC边上的高,

    ∴∠ADB=90°,

    而∠B=64°,

    ∴∠BAD=180°-∠ADB-∠B=180°-90°-64°=26°,

    又∵∠B+∠BAC+∠C=180°,

    而∠C=40°,∠B=64°,

    ∴∠BAC=180°-40°-64°=76°,

    ∵AE是∠BAC的角平分线,

    ∴∠BAE=[1/2]∠BAC=[1/2]×76°=38°,

    ∴∠DAE=∠BAE-∠BAD=38°-26°=12°.

    点评:

    本题考点: 三角形内角和定理.

    考点点评: 本题考查了三角形内角和定理:三角形的内角和为180°.也考查了角平分线的定义.