1、由f(x1+x2)≥f(x1)+f(x2),令x1=x2=0得:f(0)≥2f(0),即f(0)≤0;
又根据题设:①对于任意的x∈[0,1],总有f(x) ≥0,∴f(0)=0;
2、由f(x1+x2)≥f(x1)+f(x2)得:f(x1+x2)-f(x2)≥f(x1),
设0≤X1≤X2≤1,令X2=x1+x2,X1=x2,x1=X2-X1≥0
∴f(X2)-f(X1)≥f(X2-X1)≥0,f(x) 为增函数,f(x)的最大值为f(1)=1;
3、 当x∈[0,1/2]时,由f(x1+x2)≥f(x1)+f(x2),令x1=x2=x,得证.
当x∈(1/2,1]时,∵ f(x)的最大值为f(1)=1;
∴f(x)≤1<2X