若切线斜率存在
设切线方程为y-4=k(x-4)
整理得kx-y-4k+4=0
圆方程可化为(x-3)^2+(y-2)^2=1
圆心坐标(3,2),半径为1
圆心到切线距离d=|kx-y-4k+4|/√1+k^2=|2-k|/√1+k^2=1
解得k=3/4
切线方程为3x-4y+4=0
若切线斜率不存在
直线方程为x=4,为圆的切线
所以切线方程为3x-4y+4=0和x=4
若切线斜率存在
设切线方程为y-4=k(x-4)
整理得kx-y-4k+4=0
圆方程可化为(x-3)^2+(y-2)^2=1
圆心坐标(3,2),半径为1
圆心到切线距离d=|kx-y-4k+4|/√1+k^2=|2-k|/√1+k^2=1
解得k=3/4
切线方程为3x-4y+4=0
若切线斜率不存在
直线方程为x=4,为圆的切线
所以切线方程为3x-4y+4=0和x=4