解题思路:根据自然数n使得作加法n+(n+1)+(n+2)运算均不产生进位现象,则称n为“给力数”,因此n的个位数的可能取值最大是2,其他位上的数字最大的取值是3,得到集合A,根据分类计数原理得到数字的个数.
本题是一个分类计数问题,
由题意知给力数的个位取值:0,1,2
给力数的其它数位取值:0,1,2,3
∴A={0,1,2,3}
可组成的三位偶数:
个位为0的有3×2=6个
个为不为0的有2×2=4个
∴共6+4=10个
故答案为10.
点评:
本题考点: 计数原理的应用.
考点点评: 本题考查新定义,考查分类计数原理,考查数字的排列问题,这是最常见的一种题目类型,注意数字0的特殊要求.