解题思路:先根据顶点式确定抛物线y=(x-1)2+3的顶点坐标为(1,3),再利用点的平移得到平移后抛物线的顶点坐标为(0,3),于是得到移后抛物线解析式为y=x2+3,然后求平移后的抛物线与y轴的交点坐标.
抛物线y=(x-1)2+3的顶点坐标为(1,3),
把点(1,3)向左平移1个单位得到点的坐标为(0,3),
所以平移后抛物线解析式为y=x2+3,
所以得到的抛物线与y轴的交点坐标为(0,3).
故选:B.
点评:
本题考点: 二次函数图象与几何变换.
考点点评: 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.