f(x)=sinx(sinx+cosx)-1/2
=1/2(2sin²x-1+2sinxcosx)
=1/2(sin2x-cos2x)
=√2/2sin(2x-π/4)
2kπ-π/2≤2x-π/4≤2kπ+π/2
kπ-π/8≤x≤kπ+3π/8
2kπ+π/2≤2x-π/4≤2kπ+3π/2
kπ+3π/8≤x≤kπ+7π/8
因此,单增区间[kπ-π/8,kπ+3π/8];单减区间[kπ+3π/8,kπ+7π/8]
√2/2sin(2A-π/4)=1/2
A=π/2
f(x)=sinx(sinx+cosx)-1/2
=1/2(2sin²x-1+2sinxcosx)
=1/2(sin2x-cos2x)
=√2/2sin(2x-π/4)
2kπ-π/2≤2x-π/4≤2kπ+π/2
kπ-π/8≤x≤kπ+3π/8
2kπ+π/2≤2x-π/4≤2kπ+3π/2
kπ+3π/8≤x≤kπ+7π/8
因此,单增区间[kπ-π/8,kπ+3π/8];单减区间[kπ+3π/8,kπ+7π/8]
√2/2sin(2A-π/4)=1/2
A=π/2