y=∫(x在上0在下)(sint+costsint)dt

3个回答

  • y=∫(sint)dt+(1/2)∫sin2tdt(上限x 下限0)

    =-cost+(1/4))∫sin2td(2t)(上限x 下限0)

    =-[cosx-cos0)-(1/4)cos2t)(上限x 下限0)

    =1-cosx-(cos2x-cos0)/4

    =1-cosx+1/4-[2(cosx)^2-1]/4

    =3/2-cosx-(cosx)^2/2,

    令u=cosx,

    y=3/2-u-u^2/2

    =-(u^2+2u-3)/2

    =-[(u+1)^2-4]/2

    =-(u+1)^2+2,

    当u=-1时,y有最大值为2,

    cos2x=-1,x=π,

    即x=π时,y有最大值为2,

    故选 B.