(1)证明:∵BC⊥CC 1,BC⊥AC,AC∩CC 1=C,∴BC⊥平面ACC 1A 1,
C 1D⊂平面ACC 1A 1,∴BC⊥C 1D,
A 1C 1=A 1D=AD=AC,∴ ∠ A 1 D C 1 =∠ADC=
π
4 ,
∴ ∠ C 1 DC=
π
2 ,即C 1D⊥DC,
又BD∩CD=C,∴C 1D⊥平面BDC,
(2)三棱锥C-BC 1D即三棱锥C 1-BCD,由(1)知BC⊥CD,
CD=
2 a,BC=a
∴△BCD的面积 S=
1
2 ×BC×CD=
2
2 a 2 ,
由(1)知,C 1D是三棱锥C 1-BCD底面BDC上的高,
∴体积 V=
1
3 Sh=
1
3 ×S× C 1 D =
1
3 ×
2
2 a 2 ×
2 a=
1
3 a 3 .