此题在实数和复数范围内因式分解的的结果不同,步骤如下:
原式=x²+ 2xy+ y²+2x-2y+1
=x²- 2xy +y²+2(x-y)+1+4xy
=[(x-y)²+2(x-y)+1]+4xy
=(x-y+1)² -[2√(-xy)]²
=[x-y+1+2√(-xy)][x-y+1-2√(-xy)] .(★)
=(√x+√(-y)+i)(√x+√(-y)-i)(√x-√(-y)+i)(√x-√(-y)-i) .(☆)
(★)行是在实数范围内的结果;
(☆)行是复数范围内的结果(其中i²=-1)