[1/(a²+2a) -1/(a²+4a+4)]÷[2/(a²+2a)]
=[1/a(a+2) -1/(a+2)²]÷[2/a(a+2)]
=[1/a(a+2) -1/(a+2)²]×[a(a+2)/2]
=(1/2) -a/[2(a+2)]
=(1/2) -(a+2-2)/[2(a+2)]
=(1/2) -(1/2) +1/(a+2)
=1/(a+2)
=1/(2+√3)
=(2-√3)/[(2+√3)(2-√3)]
=2-√3
[1/(a²+2a) -1/(a²+4a+4)]÷[2/(a²+2a)]
=[1/a(a+2) -1/(a+2)²]÷[2/a(a+2)]
=[1/a(a+2) -1/(a+2)²]×[a(a+2)/2]
=(1/2) -a/[2(a+2)]
=(1/2) -(a+2-2)/[2(a+2)]
=(1/2) -(1/2) +1/(a+2)
=1/(a+2)
=1/(2+√3)
=(2-√3)/[(2+√3)(2-√3)]
=2-√3