Sn=3[Sn-S(n-1)]+2
Sn=3Sn-3S(n-1)+2
2Sn=3S(n-1)-2
2Sn-4=3S(n-1)-6
2(Sn-2)=3[S(n-1)-2]
(Sn-2)/[S(n-1)-2]=3/2
所以Sn-2是等比数列,q=3/2
S1-2=a1-2=-1
所以Sn-2=-1*(3/2)^(n-1)
Sn=2-(3/2)^(n-1)
n>=2
an=Sn-S(n-1)=-(3/2)^(n-1)+(3/2)^(n-2)=-1/2*(3/2)^(n-2)
所以
an=1,n=1
an=-1/2*(3/2)^(n-2),n>=2