y=x^2+(k+1)x+(k-3)/4
根据韦达定理得
x1+x2=-k-1
x1x2=(k-3)/4
已知:x1²+x2²=k²+5/2
(x1+x2)²-2x1x2=k²+5/2
将x1+x2=-k-1 x1x2=(k-3)/4代入得
(k+1)²-(k-3)/2=k²+5/2
等式两边同时乘以2得
2(k+1)²-(k-3)=2k²+5
2k²+4k+2-k+3=2k²+5
3k=0
k=0
将k=0代入y=x²+(k+1)x+(k-3)/4得:
y=x²+(0+1)x+(0-3)/4
y=x²+x-3/4
所以抛物线的解析式为:y=x²+x-3/4