解题思路:根据已知及相似三角形的判定方法进行分析即可.
(1)不相似.
∵在Rt△BAC中,∠A=90°,AB=3,AC=4;
在Rt△EDF中,∠D=90°,DE=3,DF=2,
∵[AB/DF]=[3/2],[AC/DE]=[4/3],
∴[AB/DF]≠[AC/DE],
∴Rt△BAC与Rt△DFE不相似.
(2)能作如图所示的辅助线进行分割.
证明:作∠BAM=∠E,交BC于M;作∠NDE=∠B,交EF于N.
由作法和已知条件可知△BAM∽△DEN.
∵∠BAM=∠E,∠NDE=∠B,∠AMC=∠BAM+∠B,∠FND=∠E+∠NDE,
∴∠AMC=∠FND.
∵∠FDN=90°-∠NDE,∠C=90°-∠B,
∴∠FDN=∠C.
∴△AMC∽△FND.
点评:
本题考点: 相似三角形的判定.
考点点评: 此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;
②有两个对应边的比相等,且其夹角相等,则两个三角形相似;
③三组对应边的比相等,则两个三角形相似.