设y=f(x)=(2^x+1)/(1-3*2^x)
y(1-3*2^x)=2^x+1
y-3y*2^x=2^x+1
2^x+3y*2^x=y-1
2^x*(1+3y)=y-1
2^x=(y-1)/(1+3y)
由于2^x>0,故(y-1)/(3y+1)>0
即y>1或y
设y=f(x)=(2^x+1)/(1-3*2^x)
y(1-3*2^x)=2^x+1
y-3y*2^x=2^x+1
2^x+3y*2^x=y-1
2^x*(1+3y)=y-1
2^x=(y-1)/(1+3y)
由于2^x>0,故(y-1)/(3y+1)>0
即y>1或y