求不定积分:∫[(1-x^2)/(1+x^2)]^(1/2)xdx

3个回答

  • ∫x√[(1-x²)/(1+x²)] dx

    设u=x²,du=2xdx

    =(1/2)∫√[(1-u)/(1+u)] du

    设t=√[(1-u)/(1+u)

    u=(1-t²)/(1+t²)

    du=-4t/(1+t²)² dt

    =-2∫t²/(1+t²)² dt

    令t=tanθ,dt=sec²θdθ

    (1+t²)²=sec⁴θ

    =-2∫tan²θ/sec⁴θ*sec²θ dθ

    =-2∫tan²θ/sec²θ dθ

    =-2∫(sec²θ-1)/sec²θ dθ

    =-2∫dθ+2∫cos²θ dθ

    =-2θ+∫(1+cos2θ)dθ

    =-θ+sinθcosθ+C

    =-arctan(t)+t/(1+t²)+C

    =-arctan√[(1-u)/(1+u)]+(1/2)√(1-u²)+C

    =-arctan√[(1-x²)/(1+x²)]+(1/2)√(1-x⁴)+C