∫x√[(1-x²)/(1+x²)] dx
设u=x²,du=2xdx
=(1/2)∫√[(1-u)/(1+u)] du
设t=√[(1-u)/(1+u)
u=(1-t²)/(1+t²)
du=-4t/(1+t²)² dt
=-2∫t²/(1+t²)² dt
令t=tanθ,dt=sec²θdθ
(1+t²)²=sec⁴θ
=-2∫tan²θ/sec⁴θ*sec²θ dθ
=-2∫tan²θ/sec²θ dθ
=-2∫(sec²θ-1)/sec²θ dθ
=-2∫dθ+2∫cos²θ dθ
=-2θ+∫(1+cos2θ)dθ
=-θ+sinθcosθ+C
=-arctan(t)+t/(1+t²)+C
=-arctan√[(1-u)/(1+u)]+(1/2)√(1-u²)+C
=-arctan√[(1-x²)/(1+x²)]+(1/2)√(1-x⁴)+C