根据正弦定理,原函数asinAsinB+bcos2A=a×根号2 等价于 sin²AsinB+sinBcos2A=sinA*√2. ①
cos2A=1-2sin²A, 等式①等价于 sinBsin²A- sinA*√2 +sinB=0. sinA只有一个值,即关于
sinA的二次函数只有一对相等实根. 2-sin²B=0, sinB=(√2)/2. sinA=1. 根据正弦定理a:sinA=b:sinB
所以b:a =sinB:sinA=(√2)/2
根据正弦定理,原函数asinAsinB+bcos2A=a×根号2 等价于 sin²AsinB+sinBcos2A=sinA*√2. ①
cos2A=1-2sin²A, 等式①等价于 sinBsin²A- sinA*√2 +sinB=0. sinA只有一个值,即关于
sinA的二次函数只有一对相等实根. 2-sin²B=0, sinB=(√2)/2. sinA=1. 根据正弦定理a:sinA=b:sinB
所以b:a =sinB:sinA=(√2)/2