解题思路:根据平行线的性质得到∠A=∠FBD,由AB=CD可得到AC=BD,然后根据三角形全等的判定方法可证出△AEC≌△BFD,再根据全等的性质即可得到结论.
∵AE∥BF,
∴∠A=∠FBD,
又∵AB=CD,
∴AB+BC=CD+BC.
即AC=BD,
在△AEC和△BFD中
AE=BF
∠A=∠FBD
AC=BD,
∴△AEC≌△BFD(SAS),
∴EC=FD.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角对应相等,那么这两个三角形全等;全等三角形的对应边相等,对应角相等.