解题思路:(1)过G作GM⊥AB于M,过H作HN⊥BC于N,求出GM=HN,求出∠GME=∠HNF=90°,∠GEM=∠HFN,证出△GME≌△HNF即可;
(2)过G作GM⊥AB于M,过H作HN⊥BC于N,根据菱形面积公式求出GM=HN,求出∠GME=∠HNF=90°,∠GEM=∠HFN,证出△GME≌△HNF即可;
(3)过G作GM⊥AB于M,过H作HN⊥BC于N,根据平行四边形面积公式求出[GM/HN]=[BC/AB]=[b/a],求出∠GME=∠HNF=90°,∠GEM=∠HFN,证出△GME∽△HNF即可.
(1)EG=FH,
理由是:
过G作GM⊥AB于M,过H作HN⊥BC于N,
∵四边形ABCD是正方形,
∴DC=AB,AD∥BC,DC∥AB,AD=BC,∠D=∠A=∠B=∠C=90°,
∴GM∥AD∥BC,HN∥DC∥AB,
∴四边形ADGM、四边形GMBC、四边形AHNB,四边形DCNH是平行四边形,
∴DC=HN=AB,AD=GM=BC,
∴HN=GM,
∵∠ADC=∠HOE=90°,
∴∠DHO+∠DGE=360°-90°-90°=180°,
∵AD∥BC,DC∥AB,
∴∠NFH=∠DHF,∠DGE+∠GEM=180°,
∴∠HFN=∠GEM,
∵HN⊥BC,GM⊥AB,
∴∠GME=∠HNF=90°,
在△GME和△HNF中
∠GEM=∠HFN
∠GME=∠HNF
GM=HN
∴△GME≌△HNF(AAS),
∴EG=FH;
(2)
EG=FH,
理由是:过G作GM⊥AB于M,过H作HN⊥BC于N,
∵四边形ABCD是菱形,
∴DC=AB=BC,AD∥BC,DC∥AB,
∵菱形ABCD的面积S=AB×GM=BC×HN,
∴GM=HN,
∵GM⊥AB,HN⊥BC,
∴∠GME=∠HNF=90°,
∵∠ADC=∠HOE,
∴∠ADC+∠HOG=∠EOH+∠HOG=180°,
∴∠DHO+∠DGE=360°-180°=180°,
∵AD∥BC,DC∥AB,
∴∠NFH=∠DHF,∠DGE+∠GEM=180°,
∴∠HFN=∠GEM,
在△GME和△HNF中
∠GEM=∠HFN
∠GME=∠HNF
GM=HN
∴△GME≌△HNF(AAS),
∴EG=FH.
(3)[EG/FH]=[b/a],
理由是:过G作GM⊥AB于M,过H作HN⊥BC于N,
∵四边形ABCD是平行四边形,
∴AD∥BC,DC∥AB,
∵平行四边形ABCD的面积S=AB×GM=BC×HN,
∵AB=a,AD=b,
∴[GM/HN]=[b/a],
∵GM⊥AB,HN⊥BC,
∴∠GME=∠HNF=90°,
∵∠ADC=∠HOE,
∴∠ADC+∠HOG=∠EOH+∠HOG=180°,
∴∠DHO+∠DGE=360°-180°=180°,
∵AD∥BC,DC∥AB,
∴∠NFH=∠DHF,∠DGE+∠GEM=180°,
∴∠HFN=∠GEM,
∴△GME∽△HNF,
∴[EG/FH]=[GM/HN]=[b/a],
故答案为:[EG/FH]=
点评:
本题考点: 四边形综合题.
考点点评: 本题考查了正方形性质,平行四边形性质,菱形性质,面积公式,全等三角形的性质和判定,相似三角形的性质和判定的应用,题目具有一定的代表性,证明过程类似.