证明:连接AB
则∠ABG = ∠C(同弧所对的圆周角相等)
∵BC是直径
∴∠BAC=90°
∴∠ABF+∠AFB=90°
∵AP垂直于BC
∴∠C+∠A=90°
∴∠A=∠AFB
∴AE=EF
∵∠BAP+∠A=90°
∴∠BAP=∠ABG = ∠C
∴AE=BE=EF
证明:连接AB
则∠ABG = ∠C(同弧所对的圆周角相等)
∵BC是直径
∴∠BAC=90°
∴∠ABF+∠AFB=90°
∵AP垂直于BC
∴∠C+∠A=90°
∴∠A=∠AFB
∴AE=EF
∵∠BAP+∠A=90°
∴∠BAP=∠ABG = ∠C
∴AE=BE=EF