[1/15]+[2/15]+[3/15]+[4/15]+.+[n-1/15]+[n/15]
=(1+2+3+4+-----+(n-1)+n)/15=(n+1)n/(2*15)
=(n+1)n/30>2011,
n²+n>60330,(n+1/2)²>60330+1/4,因为251²
[1/15]+[2/15]+[3/15]+[4/15]+.+[n-1/15]+[n/15]
=(1+2+3+4+-----+(n-1)+n)/15=(n+1)n/(2*15)
=(n+1)n/30>2011,
n²+n>60330,(n+1/2)²>60330+1/4,因为251²