求证sin3a*cos^3a+cos3a*sin^3a=3/4sin4a

1个回答

  • sin3a

    =sin(2a+a)

    =sin2acosa+cos2asina

    =2sina(1-sin^2a)+(1-2sin^2a)sina

    =3sina-4sin^3a

    cos3a

    =cos(2a+a)

    =cos2acosa-sin2asina

    =(2cos^2a-1)cosa-2(1-cos^a)cosa

    =4cos^3a-3cosa

    sin3a*cos^3a+cos3a*sin^3a

    =(3sina-4sin^3a )*cos^3a+(4cos^3a-3cosa )*sin^3a

    =3sina*cos^3a-4sin^3a *cos^3a+4cos^3a*sin^3a-3cosa*sin^3a

    =3sina*cos^3a-3cosa*sin^3a

    =3sina*cosa(cos^2a-sin^2a)

    =3/2*sin2a*cos2a

    =3/2*1/2*sin4a

    =3sin4a/4