1.因为(3π/4+b)-(π/4-a)=b+a+π/2
所以cos[(a+b)+π/2]=cos(a+b)*cosπ/2-sin(a+b)*sinπ/2=-sin(a+b)
所以sin(a+b)=-cos[(a+b)+π/2]=-cos[(3π/4+b)-(π/4-a)]
=-[cos(3π/4+b)*cos(π/4-a)+sin(3π/4+b)*sin(π/4-a)]
由π/4
1.因为(3π/4+b)-(π/4-a)=b+a+π/2
所以cos[(a+b)+π/2]=cos(a+b)*cosπ/2-sin(a+b)*sinπ/2=-sin(a+b)
所以sin(a+b)=-cos[(a+b)+π/2]=-cos[(3π/4+b)-(π/4-a)]
=-[cos(3π/4+b)*cos(π/4-a)+sin(3π/4+b)*sin(π/4-a)]
由π/4