解题思路:本题依据三角形三边关系,可求第三边大于2小于8,原三角形的周长大于10小于16,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于5而小于8,看哪个符合就可以了.
设三角形的三边分别是a、b、c,令a=3,b=5,
∴2<c<8,
∴10<三角形的周长<16,
∴5<中点三角形周长<8.
故选A.
点评:
本题考点: 三角形中位线定理;三角形三边关系.
考点点评: 本题重点考查了三角形的中位线定理,利用三角形三边关系,确定原三角形的周长范围是解题的关键.
解题思路:本题依据三角形三边关系,可求第三边大于2小于8,原三角形的周长大于10小于16,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于5而小于8,看哪个符合就可以了.
设三角形的三边分别是a、b、c,令a=3,b=5,
∴2<c<8,
∴10<三角形的周长<16,
∴5<中点三角形周长<8.
故选A.
点评:
本题考点: 三角形中位线定理;三角形三边关系.
考点点评: 本题重点考查了三角形的中位线定理,利用三角形三边关系,确定原三角形的周长范围是解题的关键.