设函数fx=二分之一mx的平方–2x+lnx

1个回答

  • 定义域x > 0

    1.

    f'(x) = mx - 2 + 1/x = (mx² - 2x + 1)/x

    f'(1) = m - 1 = 0,m = 1

    m = 1时,f'(x) = (x² - 2x + 1)/x = (x - 1)²/x

    在x = 1两侧,f'(x)均> 0,x = 1不可能为函数fx的极值点

    2.

    (i) m = 0

    f(x) = -2x + lnx

    f'(x) = -2 + 1/x

    f'(x) = 0,x = 1/2

    0 < x < 1/2:f'(x) > 0,f(x)单调递增

    (ii) m > 0

    f'(x) = (mx² - 2x + 1)/x = [m(x - 1/m)² + 1 - 1/m]/x

    (a) m ≥ 1

    0 0,f'(x) ≥ 0

    f(x)在定义域x> 0内单调递增

    (b) 0 < m < 1

    f'(x) = (mx² - 2x + 1)/x = 0

    mx² - 2x + 1 = 0的解为x₁,₂ = [1 ±√(1-m)]/m

    0 < x < [1 - √(1-m)]/m或x > [1 +√(1-m)]/m 时,f'(x) > 0,f(x)单调递增

    3.

    g(x)里没有t,题有问题.