(2004•无锡)已知直线y=-2x+b(b≠0)与x轴交于点A,与y轴交于点B;一抛物线的解析式为y=x2-(b+10

1个回答

  • 解题思路:(1)先表示出B、P的坐标,然后将B代入抛物线的解析式中,将P代入直线的解析式中,联立两式可求出b、c的值,即可确定抛物线的解析式;

    (2)可根据直线AB的解析式表示出A、B的坐标,即可求出OA、OB的长,由于∠ABC=90°,在直角三角形ABC中,可用射影定理求出OC的长,然后联立抛物线的对称轴方程即可求出b的值.也就求出了直线AB的解析式.

    (1)直线y=-2x+b与x轴交于点A,与y轴交于点B,∴点A坐标为(b2,0),点B坐标(0,b),由题意知,抛物线顶点P坐标为(b+102,4c−(b+10)24),∵抛物线顶点P在直线y=-2x+b上,且过点B,解得b1=-10,c1=-10,b2=-6...

    点评:

    本题考点: 二次函数综合题.

    考点点评: 本题考查了一次函数、二次函数解析式的确定以及函数图象交点等知识,要注意(2)中,在b的取值范围不确定的情况下,要分类讨论,以免漏解.