1)α=135°时,直线AB的斜率为k=tan135°=-1
又AB过点P(-1,2),∴直线AB方程为y=-1(x+1)+2=-x+1
将直线代入圆方程得 x^2+(-x+1)^2=8
整理得 2x^2-2x-7=0
∴x1+x2=1,x1x2=-7/2; y1+y2=-(x1+x2)+2=1,
y1y2=(-x1+1)(-x2+1)=-x1x2-(x1+x2)+1=7/2-1+1=7/2
∴AB=√[(x1-x2)^2+(y1-y2)^2]
=√[(x1+x2)^2-4x1x2+(y1+y2)^2-4y1y2]
=√[1^2+4*7/2+1^2-4*7/2]
=√2
2)当弦AB被点P平分时,必有AB⊥OP
而k(OP)=2/(-1)=-2,∴k(AB)=-1/k(OP)=1/2
又直线AB过点P(-1,2)
∴直线AB方程为 y=1/2*(x+1)+2=(x+5)/2