设椭圆的长半轴为2a,由已知可得|F1P|+|F2P|=2a,又因为|PQ|=|PF2|,所以|F1P|+|F2P|=|F1P|+|PQ|,所以||F1P|+|PQ|=2a,即|F1Q|=2a.所以Q点的轨迹为以F1为圆心,以椭圆长轴为半径的圆.
已知椭圆的焦点是F1、F2,P是椭圆上的一动点,如果延长F1P到Q,使得│PQ│=│PF2│,那么动点Q的轨迹是
1个回答
相关问题
-
已知椭圆的焦点F1,F2,点P是椭圆上的一动点,如果延长PF1到Q,使得PQ=PF2,那么点Q的轨迹是?
-
已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是(
-
已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是(
-
已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是(
-
数学题椭圆的焦点是F1F2,P是椭圆的一动点,延长F1P到Q,使得PQ=PF2,那么动点P的轨迹是
-
圆锥曲线给过程已知椭圆的焦点F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得F1Q=PF2,那么动点的轨迹是答
-
椭圆焦点F1,F2,P是椭圆上一动点,延长F1P到点Q,使|PQ|=|F2P|,求点Q轨迹
-
x/4+y/3=1的椭圆上F1F2是椭圆的左右焦点P是椭圆上的一动点Q满足【PQ】【F1P】方向相同又有【PQ】=【PF
-
已知椭圆x^2/25+y^2/9=1的焦点是F1,F2,M是椭圆上一个动点,如果延长F1M到N,使得MN=MF2,那么动