证明:
∵AB=AC,∠A=36°
∴∠ABC=∠ACB=72°
∵BD平分∠ABC
∴∠CBD=36°
∴∠CBD=∠A,∠BDC=72°
∴BD=BC=AD,△BCD∽△ABC
∴BC/AC=CD/BC
∴BC²=CD*CA
∴AD²=CD*CA
∴D是AC的黄金分割点
证明:
∵AB=AC,∠A=36°
∴∠ABC=∠ACB=72°
∵BD平分∠ABC
∴∠CBD=36°
∴∠CBD=∠A,∠BDC=72°
∴BD=BC=AD,△BCD∽△ABC
∴BC/AC=CD/BC
∴BC²=CD*CA
∴AD²=CD*CA
∴D是AC的黄金分割点