f(A)=2sin(∏/2+A/2)+cos(2∏-A/2)+cos^2(3∏/2+A/2)-sin^2(A/2-∏/2).
=2cosA/2+cosA/2+sin²A/2-cos²A/2
=3cosA/2+1-2cos²A/2
f(π/3)=3cosπ/6+1-2cos²π/6
=3√3/2+1-2*3/4
=(3√3-1)/2
f(A) =-2cos²A/2+3cosA/2+1
=-2(cosA/2-3/4)²+17/8
f(A)=2sin(∏/2+A/2)+cos(2∏-A/2)+cos^2(3∏/2+A/2)-sin^2(A/2-∏/2).
=2cosA/2+cosA/2+sin²A/2-cos²A/2
=3cosA/2+1-2cos²A/2
f(π/3)=3cosπ/6+1-2cos²π/6
=3√3/2+1-2*3/4
=(3√3-1)/2
f(A) =-2cos²A/2+3cosA/2+1
=-2(cosA/2-3/4)²+17/8