设圆为(x-a)^2+(y-b)^2=4
代入A,B得:
(1-a)^2+(-4-b)^2=4 1)
(3-a)^2+(-2-b)^2=4 2)
两式相减得:-8+4a+12+4b=0,得:b=-1-a
代入1)式得:(1-a)^2+(3-a)^2=4,
即a^2-4a+3=0
(a-1)(a-3)=0
得:a=1,3
故:b=-2,-4
所以圆为
(x-1)^2+(y+2)^2=4
或(x-3)^2+(y+4)^2=4
设圆为(x-a)^2+(y-b)^2=4
代入A,B得:
(1-a)^2+(-4-b)^2=4 1)
(3-a)^2+(-2-b)^2=4 2)
两式相减得:-8+4a+12+4b=0,得:b=-1-a
代入1)式得:(1-a)^2+(3-a)^2=4,
即a^2-4a+3=0
(a-1)(a-3)=0
得:a=1,3
故:b=-2,-4
所以圆为
(x-1)^2+(y+2)^2=4
或(x-3)^2+(y+4)^2=4