f(x)=x/(x+1) +1/(x-1)
=[x(x-1) +x+1]/(x²-1)
=(x²+1)/(x²-1)
=1+2/(x²-1),
(1)易得f(-x)=f(x)
从而 f(x)是偶函数.
(2)易得f(x)在(1,+∞)上是减函数,
而 a²+a+3=(a+1/2)²+11/4 >2
从而 f(a²+a+3)
f(x)=x/(x+1) +1/(x-1)
=[x(x-1) +x+1]/(x²-1)
=(x²+1)/(x²-1)
=1+2/(x²-1),
(1)易得f(-x)=f(x)
从而 f(x)是偶函数.
(2)易得f(x)在(1,+∞)上是减函数,
而 a²+a+3=(a+1/2)²+11/4 >2
从而 f(a²+a+3)