(1)∠BOC = 180° - ∠OBC - ∠OCB (三角形内角和180°)
∵ O是三角形ABC的3条角平分线的交点
∴∠OBC = (0.5)∠ABC, ∠OCB =1/2∠ACB
∠BOC = 180°- 1/2∠ABC -1/2∠ACB = 180°- 1/2(∠ABC+∠ACB)
∵ ∠ABC + ∠ACB = 180°-∠BAC(三角形内角和180°)
∴∠OBC = 180°-1/(180°-∠BAC) = 90°-1/2∠BAC
(2)∠DOB = ∠EBA+∠BAD (三角形一个外角 = 另两个内角的和)
∠DOB = 0.5(∠ABC+∠BAC) (角平分线)
= 0.5 (180°-∠ACB) (三角形内角和180°)
= 90° - 0.5∠ACB
= 90° - ∠OCG
∠GOC = 180° - 90° - ∠OCG (三角形内角和180°)
∴∠DOB = ∠GOC