如图,O是△ABC的3条角平分线的交点,OG⊥BC,垂足为G1)猜想∠BOC与90°+1/2∠BAC之间的数量关系,并说

1个回答

  • (1)∠BOC = 180° - ∠OBC - ∠OCB (三角形内角和180°)

    ∵ O是三角形ABC的3条角平分线的交点

    ∴∠OBC = (0.5)∠ABC, ∠OCB =1/2∠ACB

    ∠BOC = 180°- 1/2∠ABC -1/2∠ACB = 180°- 1/2(∠ABC+∠ACB)

    ∵ ∠ABC + ∠ACB = 180°-∠BAC(三角形内角和180°)

    ∴∠OBC = 180°-1/(180°-∠BAC) = 90°-1/2∠BAC

    (2)∠DOB = ∠EBA+∠BAD (三角形一个外角 = 另两个内角的和)

    ∠DOB = 0.5(∠ABC+∠BAC) (角平分线)

    = 0.5 (180°-∠ACB) (三角形内角和180°)

    = 90° - 0.5∠ACB

    = 90° - ∠OCG

    ∠GOC = 180° - 90° - ∠OCG (三角形内角和180°)

    ∴∠DOB = ∠GOC