当n=1时,左=1,右=1,结论正确.
当n=k时,1²+2²+…+k²=k(k+1)(2k+1)/6,则当n=k+1时,
1²+2²+…+k²+(k+1)²=k(k+1)(2k+1)/6+(k+1)²
=(1/6)(k+1)[2k²+k+6(k+1)]
=(1/6)(k+1)(2k+3)(k+2)
=(1/6)(k+1)[(k+1)+1][2(k+1)+1]成立,从而得证.
当n=1时,左=1,右=1,结论正确.
当n=k时,1²+2²+…+k²=k(k+1)(2k+1)/6,则当n=k+1时,
1²+2²+…+k²+(k+1)²=k(k+1)(2k+1)/6+(k+1)²
=(1/6)(k+1)[2k²+k+6(k+1)]
=(1/6)(k+1)(2k+3)(k+2)
=(1/6)(k+1)[(k+1)+1][2(k+1)+1]成立,从而得证.